Vector space
Detaileddefinition
Vectorspaceisalsocalledlinearspace.Itisoneofthecentralcontentandbasicconceptsoflinearalgebra.LetVbeanon-emptysetandPbeadomain.If:
1.AnoperationisdefinedinV,calledaddition,whichmeansthatanytwoelementsαandβinVcorrespondtoauniqueelementαinVaccordingtoacertainrule.+β,calledthesumofαandβ.
2.AnoperationisdefinedbetweentheelementsofPandV,calledscalarmultiplication(alsoknownasquantitymultiplication),thatis,foranyelementαinVandanyelementkinP,pressAcertainrulecorrespondstoauniqueelementkαinV,whichiscalledtheproductofkandα.
3.Additionandscalarmultiplicationmeetthefollowingconditions:
1)α+β=β+α,foranyα,β∈V.
2)α+(β+γ)=(α+β)+γ,foranyα,β,γ∈V.
3)Thereisanelement0∈V,forallα∈Vthereisα+0=α,element0iscalledthenullelementofV.
4)Foranyα∈V,thereisβ∈Vsothatα+β=0,andβiscalledthenegativeelementofα,Denotedas-α.
5)Fortheunitelement1inP,1α=α(α∈V).
6)Foranyk,l∈P,α∈Vhas(kl)α=k(lα).
7)Foranyk,l∈P,α∈Vhas(k+l)α=kα+lα.
8)Foranyk∈P,α,β∈V,thereisk(α+β)=kα+kβ,andthenViscalledalinearspaceorvectorspaceonthedomainP.TheelementsinVarecalledvectors,thezeroelementsofVarecalledzerovectors,andPiscalledthebasefieldoflinearspace.WhenPisarealnumberfield,Viscalledareallinearspace.WhenPisacomplexnumberfield,ViscalledacomplexLinearspace.Forexample,ifVisasetcomposedofallvectors(directedlinesegments)inathree-dimensionalgeometricspace,andPisarealnumberfieldR,thentheadditionofVtovectors(thatis,theparallelogramrule)andthemultiplicationofnumbersandvectorsformalinearityontherealnumberfieldRspace.Foranotherexample,ifVisthesetMmn(P)composedofallm×nmatricesinthenumberfieldP,theadditionandscalarmultiplicationofVaretheadditionofmatricesandthemultiplicationofnumbersandmatrices,respectively,thenMmn(P)isalinearspaceonthenumberdomainP.ThevectorinVisanm×nmatrix.Foranotherexample,thesetPcomposedofalln-elementvectors(a1,a2,...,an)onthedomainPisforaddition:(a1,a2,...,an)+(b1,b2,...,bn)=(a1+b1,a2+b2,...,an+bn)andscalarmultiplication:λ(a1,a2,…,an)=(λa1,λa2,…,λan)constitutethelinearspaceonthedomainP,whichiscalledthen-elementvectorspaceonthedomainP.
Linearspaceisinvestigatingtheessentialpropertiesofalargenumberofmathematicalobjects(suchasvectorsingeometryandphysics,n-elementvectors,matrices,polynomialsinalgebra,functionsinanalysis,etc.)Themathematicalconceptsabstractedlater,manyresearchobjectsinmodernmathematics,suchasnormedlinearspacesandmodules,arecloselyrelatedtolinearspaces.Itstheoriesandmethodshavepenetratedintomanyfieldsofnaturalscienceandengineeringtechnology.Hamilton(W.R.)firstintroducedthetermvectorandpioneeredvectortheoryandvectorcalculation.Grassmann(H.G.)firstproposedthesystemtheoryofmultidimensionalEuclideanspace.From1844to1847,heandCauchy(A.-L.)respectivelyproposedanabstractn-dimensionalspacethatwasseparatedfromallspaceintuitionandbecameapurelymathematicalconcept.Toeplitz(O.)extendedthemaintheoremsoflinearalgebratogenerallinearspacesonarbitraryfields.
Axiomaticdefinition
LetFbeadomain.AvectorspaceonFistwooperationsofasetV:
Vectoraddition:V+V→V,denotedasv+w,Vv,w∈V
Scalarmultiplication:F×V→V,denotedasa·v,Va∈F,v∈V
Meetsthefollowingaxioms(∀a,b∈Fandu,v,w∈V):
Associativelawofvectoraddition:u+(v+w)=(u+v)+w;
Commutativelawofvectoraddition:v+w=w+v;
Theidentityelementofvectoraddition:Vcontainsazerovectorcalled0,∀v∈V,v+0=v;
Theinverseelementofvectoraddition:∀v∈V,∃w∈V,suchthatv+w=0;
Scalarmultiplicationisallocatedtovectoraddition:a(v+w)=av+aw;
Scalarmultiplicationisallocatedtofieldaddition:(a+b)v=av+bv;
Scalarmultiplicationisconsistentwithscalardomainmultiplication:a(bv)=(ab)v;
Scalarmultiplicationhasidentityelement:1v=v,where1referstothemultiplicationidentityelementofdomainF.
Sometextbooksalsoemphasizethefollowingtwoaxioms:
Visclosedundervectoraddition:v+w∈V
Visclosedunderscalarmultiplication:av∈V
Moreabstractly,avectorspaceonFisanF-module.ThemembersofVarecalledvectors,andthemembersofFarecalledscalars.IfFistherealnumberfieldR,Viscalledtherealvectorspace;ifFisthecomplexnumberfieldC,Viscalledthecomplexvectorspace;ifFisthefinitefield,Viscalledthefinitefieldvectorspace;forthegeneralfieldF,ViscalledF-vectorspace.
Thefirst4axiomsexplainthatthevectorVisanAbeliangroupinvectoraddition,andtheremaining4axiomsareusedforscalarmultiplication.
Thefollowingaresomeofthecharacteristicsthatareeasilyderivedfromthevectorspaceaxioms:
Thezerovector0∈V(Axiom3)isunique
a0=0,∀a∈F
0v=0,∀v∈V,where0istheadditionofFUnitelement
av=0,youcandeduceeithera=0orv=0
TheadditiveinverseofvYuan(Axiom4)isunique(writtenas−v).Bothv−wandv+(−w)arestandard.
(−1)v=−v,∀v∈V
(−a)v=a(−v)=−(av),∀a∈F,∀v∈V
Linearityindependence
IfVisalinearspace,iftherearecoefficientsc1,c
Onthecontrary,thissetofvectorsiscalledlinearlyindependent.Moregenerally,ifthereareaninfinitenumberofvectors,wesaythattheseinfinitevectorsarelinearlyindependent,andifanyfinitenumberofthemarelinearlyindependent.
Subspace
LetWbeanon-emptysubsetofvectorspaceV,ifWisclosedundertheadditionofVandscalarmultiplication,andthezerovector0∈W,thenCallWthelinearsubspaceofV.
GivenavectorsetB,thenthesmallestsubspacecontainingitiscalleditsexpansion,denotedasspan(B).Inaddition,theexpansionoftheemptysetcanbespecifiedas{0}.
GivenavectorsetB,ifitsexpansionisthevectorspaceV,thenBiscalledthegeneratingsetofV.
GivenavectorsetB,ifBislinearlyindependent,andBcangenerateV,thenBiscalledabasisofV.IfV={0},theonlybasisistheemptyset.Foranon-zerovectorspaceV,thebasisisthesmallestgeneratingsetofV,whichisalsoamaximallylinearlyindependentgroup.
IfavectorspaceVhasageneratingsetwithafinitenumberofelements,thenVissaidtobeafinite-dimensionalspace.Allthebasisofavectorspacehavethesamecardinality,whichiscalledthedimensionofthespace.Forexample,realnumbervectorspace:R0,R1,R2,R3,…,RThedimensionofnisn.
Eachvectorinthespacehasauniquemethodtoexpressasalinearcombinationofvectorsinthebase.Moreover,byarrangingthevectorsinthebasistorepresentanorderedbasis,eachvectorcanberepresentedbyacoordinatesystem.
Linearmapping
IfbothVandWarevectorspacesonthedomainF,alineartransformationfromVtoWor"linearmapping"canbeset".ThesemappingsfromVtoWhavesomethingincommon,thatis,theymaintainthesumandscalarquotient.ThissetcontainsalllinearmappingsfromVtoW,describedbyL(V,W),andisalsoavectorspaceonthedomainF.WhenVandWaredetermined,thelinearmappingcanbeexpressedbyamatrix.
Isomorphismisaone-to-onelinearmapping.IfthereisanisomorphismbetweenVandW,wecallthesetwospacesisomorphism;eachn-dimensionalvectorspaceonthedomainFisthesameasthevectorspaceFIsomorphism.
AvectorspaceintheFfieldplusalinearmappingcanformacategory,thatis,theAbeliancategory.
Extrastructure
Thestudyofvectorspacesnaturallyinvolvessomeextrastructure.Theadditionalstructureisasfollows:
Arealorcomplexvectorspaceplustheconceptoflength.Thenormiscalledthenormedvectorspace.
Theconceptofarealorcomplexvectorspacepluslengthandangleiscalledinnerproductspace.
Avectorspaceplustopologicallyconsistentoperations(additionandscalarmultiplicationarecontinuousmappings)iscalledatopologicalvectorspace.
Avectorspaceplusabilinearoperator(definedasvectormultiplication)isafieldalgebra.
Latest: CIA