Priori probability
Introduction
InBayesianstatisticalinference,thepriorprobabilitydistributionofanuncertainnumberisaprobabilitydistributionthatexpressesthedegreeofconfidenceinthenumberbeforeconsideringsomefactors.Forexample,thepriorprobabilitydistributionmayrepresenttheprobabilitydistributionoftherelativeproportionofvoterswhovotedforaparticularpoliticianinfutureelections.Theunknownquantitycanbeaparameterofthemodeloralatentvariable.
Bayes'theoremcalculatesthesuccessiveproductoftherenormalizationofthepriorandthelikelihoodfunctiontoproducetheposteriorprobabilitydistribution,whichistheconditionaldistributionoftheuncertaintyofthegivendata.
Similarly,thepriorprobabilityofarandomeventoranuncertainpropositionisanunconditionalprobabilityassignedbeforeanyrelevantevidenceisconsidered.
Therearemanywaystocreatepriorities.Thepastinformationcanbedeterminedbasedonpreviousexperiments.Previousexperiencecanbedrawnfrompurelysubjectiveassessmentsbyexperiencedexperts.Whennoinformationisavailable,anunknownpriorcanbecreatedtoreflectthebalancebetweentheresults.Theprioritycanalsobeselectedaccordingtocertainprinciples,suchassymmetryormaximizingtheentropyofagivenconstraint;examplesarethereferenceexamplesbeforeJeffriesorBernard.Whenthereisafamilyofconjugatepriors,selectthepreviousmethodfromthisfamilytosimplifythecalculationoftheposteriordistribution.
Theparameterofthepreviousdistributionisakindofhyperparameter.Forexample,ifthebetadistributionisusedtosimulatethedistributionoftheBernoullidistributionparameterp,then:
pistheparameteroftheunderlyingsystem(Bernoullidistribution),andαandβarethepreviousdistributions(βdistribution)parameter.
Hyper-parametersmaythemselveshavesuper-deriveddistributionsthatexpressbeliefsabouttheirvalues.ABayesianmodelwithmultiplepreviouslevelsiscalledahierarchicalBayesianmodel.
Informationprior
Informationpriorexpressesspecificandclearinformationaboutvariables.Takeanexample:thetemperaturedistributionbeforenoontomorrow.Areasonablemethodistosettheexpectedvalueofthenormaldistributiontobeequaltotoday'snoontemperature,anditsvarianceisequaltothedailychangeofatmospherictemperature,orthetemperaturedistributiononthatdayoftheyear.
Thisexamplehasmanyaprioricommonfeatures,thatis,frombehindonequestion(today'stemperature),becomesaprecedentforanotherquestion(tomorrow'stemperature);thepre-existingevidencethathasbeenconsideredisTheformerpart,andasmoreandmoreevidenceaccumulates,thelatterismainlydeterminedbyevidenceratherthananyoriginalhypothesis,providedthattheoriginalhypothesisacknowledgesthepossibilityofwhattheevidenceis.Theterms"previous"and"post"aregenerallyrelativetoaspecificbenchmarkorobservation.
Unknowingpriors
Unknowingpriorsrepresentvagueorgeneralinformationaboutvariables.Theterm"unknowingapriori"issomewhatcalledamisnomer.Suchapriorimayalsobecalledapriorithatisnotverypromising,thatis,itisnotasubjectivelyelicitedgoal.
Unknowinglyaprioricanexpress"objective"information,suchas"variableispositive"or"variableislessthanacertainlimit."Thesimplestandoldestrulefordeterminingunknowingaprioriistheprincipleof"indifference",whichassignsequalprobabilitiestoallpossibilities.Intheparameterestimationproblem,theuseofanuninformedpriorusuallyproducesresultsthatarenottoolargefromtraditionalstatisticalanalysis,becausethelikelihoodfunctionusuallyproducesmoreinformationthananuninformedprior.
Therehavebeensomeattemptstofindaprioriprobability,thatis,inasense,theprobabilitydistributionlogicallyrequiredbythenatureofthestateofuncertainty;thesearetopicsofphilosophicalcontroversy,andBayesisroughlydividedintotwoOne:"ObjectiveBayes",theybelievethatsuchprerequisitesexistinmanyusefulsituations,"SubjectiveBayes"whobelievethatinpractice,aprioriusuallyrepresentssubjectivejudgmentsandjudgmentscannotberigorouslyproven(Williamson2010).PerhapsthemostpowerfulargumentforobjectiveBayesianismisgivenbyEdwinT.Jaynes,mainlybasedontheconsequencesofsymmetryandtheprincipleofmaximumentropy.
Asanaprioriexample,considerasituationwhereapersonknowsthataballishiddeninoneofthethreecupsA,B,orC,butthereisnootherinformationaboutitslocation.Inthiscase,theuniformpriorofp(A)=p(B)=p(C)=1/3seemstobetheonlyreasonablechoice.Wecanseethatifweswapthelabelsofthecups("A","B"and"C"),theproblemremainsthesame.Therefore,itisstrangetochooseanapriori,inwhichthearrangementofthelabelswillleadtoachangeinourpredictionofwhichcupwillbefound;theaprioriistheonlyunitythatpreservesthisinvariance.Ifoneacceptsthisprincipleofimmutability,thenonecanseethatitwaslogicallycorrectbeforeunification.Itshouldbepointedoutthatthisusedtobe"objective"andrepresentsthecorrectchoiceforaspecificstateofknowledge,butitisnotobjective,butasanobserver'sindependentworldfeature:infact,theballexistsinaspecificcup.Next,ifthereareobserverswhohavelimitedknowledgeofthesystem,thenitmakessensetosaytheprobabilityinthiscase.
Amorecontroversialexample,Jaynespublishedanargumentbasedontheliegroup(Jaynes1968),whichshowsthatthefulluncertaintyofprobabilityshouldbep-1(1-p)-1.TheexamplegivenbyJaynesistofindachemicalsubstanceinthelaboratoryandaskwhetheritwilldissolveinwaterinrepeatedexperiments.Haldanepreviouslygavethemaximumweightofp=0andp=1,indicatingthatthesamplewilldissolveornot,withequalprobability.However,ifasampleofthechemicalhasbeenobservedtodissolveinoneexperimentandnotinanotherexperiment,itwaspreviouslyupdatedtoauniformdistributionontheinterval[0,1].ThisisobtainedbyapplyingBayes'theoremtoadatasetusingtheaforementionedpreviousdissolutionobservationandindissolutionobservation.Haldanewaspreviouslyanincorrectpriorassignment(meaningitdoesnotintegrateinto1).Ifalimitednumberofobservationsgivethesameresult,thenputthe100%probabilitycontentinp=0orp=1.HaroldJeffreys(HaroldJeffreys)designedasystematicdesignmethodforBernoullirandomvariables,suchasJeffreys'spreviousp-1/2(1-p)-1/2Appropriatepriorsthatthedesigndoesnotunderstand[theneedforclarificationdoesnotrequireeveryonetoagreewiththisstatement.
IftheparameterspaceXhasanaturalorganizationalstructurethatpreservesourBayesianstateofknowledge(Jaynes,1968),thenapriorproportionaltotheHaarmetriccanbeconstructed.Thiscanbeseenasageneralizationoftheprincipleofinvarianceusedtoprovetheuniformitybeforethefirstthreecupsintheaboveexample.Forexample,inphysics,wemayexpectthattheexperimentwillgivethesameresultregardlessoftheoriginofthecoordinatesystemwechoose.ThisleadstoagroupstructureoftranslationgroupsonX,whichdeterminesthepriorprobabilityasaconstantincorrectprior.Similarly,thechoiceofsomemeasurementsforanyscale(forexample,whethertousecentimetersorinches,thephysicalresultsshouldbeequal)willnaturallyremainthesame.
Incorrectprior
Makeeventsmutuallyexclusive.IfBayes'theoremiswrittenas
thenitisobviousthatifallpriorprobabilitiesP(Ai)andP(Aj)aremultipliedbyagivenconstant,thesameresultwillbeobtained;thesameistrueforcontinuousrandomvariables.Ifthesuminthedenominatorconverges,evenifthepreviousvaluedoesnotexist,theposteriorprobabilitywillstill(orintegral)be1.Therefore,thepriormayonlyneedtobespecifiedinthecorrectratio.Consideringthisideafurther,inmanycases,thesumorintegralofthepreviousvaluesmaynotevenneedtobefiniteinordertoobtainareasonableanswerfortheposteriorprobability.Inthiscase,itwaspreviouslycalledincorrect.However,ifthepriorisincorrect,theposteriordistributiondoesnotneedtobeanappropriatedistribution.ItisclearfromthefactthateventBisindependentofallAj.
Statisticianssometimesuseimproperpriorsasunknowingpriors.Forexample,iftheyneedapriordistributionofthemeanandvarianceofarandomvariable,theycanassumep(m,v)~1/v(forv>0),whichshowsthatanyvalueofthemeanis"probable",Andthevalueofthepositivevariancebecomes"lesslikely"inverselyproportionaltoitsvalue.Manyauthors(Lindley,1973;DeGroot,1937;KassandWasserman,1996)statedthatsincetheyarenotprobabilitydensities,theyriskover-interpretingthesepriors.Aslongastheyhaveacleardefinitionofallobservations,theonlycorrelationcanbefoundinthecorrespondingposterior.
Otherrelatedknowledge
Classificationofpriorprobability
Thepriorprobabilitycalculatedbyusingpasthistoricaldataiscalledobjectivepriorprobability;
Whenhistoricaldataisnotavailableorthedataisincomplete,thepriorprobabilityobtainedbyjudgingpeople'ssubjectiveexperienceiscalledsubjectivepriorprobability.
Conditionsofpriorprobability
Priorprobabilityisdefinedbyclassicalprobabilitymodel,soitisalsocalledclassicalprobability.Theclassicalprobabilitymodelrequirestwoconditionstobemet:(1)allpossibleoutcomesoftheexperimentarelimited;(2)theprobability(probability)ofeachpossibleoutcomeisequal.IfthetotalnumberofallpossibleoutcomesisNandrandomeventAincludesnpossibleoutcomes,thentheprobabilityofrandomeventAisn/N.
Difference
Thepriorprobabilityisnotdeterminedbasedonallthedataaboutthenaturalstate,butonlycalculatedusingexistingmaterials(mainlyhistoricaldata);theposteriorprobabilityisusedFormorecomprehensiveinformationaboutthestateofnature,therearebothpriorprobabilitydataandsupplementarydata;
Thecalculationofthepriorprobabilityisrelativelysimple,andtheBayesianformulaisnotused;whilethecalculationoftheposteriorprobability,theBayesianformulaisused.Yees’formula,andwhenusingsampledatatocalculatelogicalprobability,thetheoreticalprobabilitydistributionmustbeused,whichrequiresmoreknowledgeofmathematicalstatistics.
Latest: wireless sensor network
Next: collision