number
Birthanddevelopment
"Number"istheconceptofmeasuringthings.Itistheconsciousexpressionofthequantitythatexistsobjectively."Numbers"originatedfromthesymbolsusedbyprimitivehumanstocountandformnaturalnumbers"numbers".Itisoneofthegreatestinventionsofmankind,andisthebasisforhumanstoaccuratelydescribethings.Inthelonghistoryofmankind,
1°obtainednumbersbycountingrealthings;
2°numberscanbecalculatedincertainways;
p>
3°Whenthenumberisrelatedtospacethings,itcanindicatethenumberofthesethings.(Fromtheoriginalnumbertheoryofnaturalnumbers)
Afewyearsago,inordertosurvive,humanancestorsoftenlivedingroupswithdozensofpeopletogether.Theyworktogetherduringtheday,huntingforbeasts,birds,orcollectingfruitfood;atnight,theyliveincavesandsharetheirlaborincome.Inthelong-termjointlaborandlife,theygraduallyreachedapointwheretheyhadtosaysomething,andlanguagecameintobeing.Theycanusesimplelanguagemixedwithgesturestoexpressfeelingsandexchangeideas.Withthedevelopmentoflaborcontent,theirlanguagehasalsocontinuedtodevelop,finallysurpassingthelanguageofallotheranimals.Oneofthemainsignsisthatlanguagecontainsthecolorofarithmetic.
Theyhuntedandreturned,andtheirpreywaseitherwithorwithout,sothereweretwoconceptsof"being"and"nothing".Forafewdaysinarow,ifthereisnoanimaltocatch,therewillbenomeattoeat,andtheconceptsof“have”and“nothing”willgraduallydeepen.
Later,gregariousnessdevelopedintotribes.Thetribeismadeupoffamilieswithfewmembers.Theso-called"being"isdividedintofourtypes:"one","two","three",and"multiple"(sometribesdon'tevenhave"three").Anynumbergreaterthan"three",theyareunderstoodas"many"or"abunch"or"agroup".Althoughsomechiefsareelders,theycan’ttellhowmanykindsofbeastshehascapturedandhowmanykindsoftreeshehasseen.Chantitout.However,nomatterwhat,theycanalreadyusetheirhandstosaysomethinglikethis(withonefingerpointingtothedeer,threefingerspointingtothearrow):"Toexchangeformeadeer.Youhavetogivemethreearrows."Thisisanarithmeticthattheydidn'thaveatthetime.knowledge.
About10,000yearsago,theglacierretreated.SomeStoneAgehunterswhowereengagedinnomadismstartedanewwayoflifeinthemountainsoftheMiddleEast-farminglife.Theyencounteredproblemssuchashowtorecordthedate,season,andhowtocountthenumberofgrainsandseedsinthecollection.EspeciallywhenmorecomplexagriculturalsocietiesweredevelopedintheNileValley,TigrisandEuphratesriverbasins,theyalsoencounteredtheproblemofpayingtaxes.Thisrequiresthenumbertohaveaname.Andthecountingmustbemoreaccurate,only"one","two","three","more"isfarfromenough.
BetweentheTigrisandtheEuphratesandaroundthetworivers,itiscalledMesopotamia.Therewasaculturethat,liketheEgyptianculture,isalsooneoftheoldestintheworld.AlthoughtheMesopotamiansandtheEgyptianswerefarapart,theyestablishedtheearliestsystemofwritingnaturalnumbersinthesameway-makingmarksontreesorstonestorecordthepassingdays.Althoughtheshapesofnumbersaredifferent,theyhavesomethingincommon.Theyallusesinglestrokestorepresent"one".
Later(especiallyaftertheysettledinthevillage),theygraduallyreplacedthenotcheswithsymbols,thatis,onesymbolrepresentsonething,twosymbolsrepresenttwothings,andsoon.Thecountingmethodlastedforalongtime.About5000yearsago,Egyptianpriestshadwrittennumbersymbolsonakindofstrawpapermadeofreeds,whileMesopotamianpriestshadwrittenthemonsoftclaytablets.Inadditiontostillusingsinglestrokestorepresent"-",theyalsouseothersymbolstorepresent"+"orlargernaturalnumbers;theyrepeatedlyusethesesinglestrokesandsymbolstorepresenttherequirednumbers.
In1500BC,thePeruvianInca(apartoftheIndians)inSouthAmericawereusedto"knotcounting"-everytimeabundleofcropswerecollected,theytiedaknotontheropeandusedaknot.Torecordtheharvest."Knot"hasthesameeffectasmarks,andisalsousedtoexpressnaturalnumbers.Accordingtotherecordoftheancientbook"IChing"inmycountry,theChineseinancienttimesalso"ruledbyknottingtherope",whichusedthemethodoftyingknotsontheropetorecordthenumberofevents.Later,itwaschangedto"bookdeed",thatis,aknifewasusedtomakemarksonbambooorwoodtocountnumbers.Useastroketorepresent"one".Tothisday,weChinesestilloftenusetheword"zheng"tocountnumbers.Eachstrokerepresents"one".Ofcourse,theword"zheng"alsocontainsthemeaningof"everyfiveadvancesintoone".
Naturalnumbers
Whencountingthings,thenumbers0,1,2,3,4,5,6,7,8,9,...arecallednaturalnumbers.
Naturalnumbershavetwomeanings:quantityandorder,whicharedividedintocardinalnumbersandordinalnumbers.Thebasicunitis1,andthecountingunitsareone,ten,onehundred,onethousand,tenthousand,etc.
Classification
Accordingto"canbedivisibleby2",itcanbedividedinto:oddandeven.
Accordingtothe"numberoffactors",itcanbedividedinto:primenumbersandcompositenumbers.
Usedtomeasurethenumberofthingsorthenumberthatindicatestheorderofthings.Thatis,thenumbersrepresentedbythenumbers0,1,2,3,4,...Naturalnumbersstartfrom0,oneafteranother,forminganinfinitegroup.Thenaturalnumbersethasadditionandmultiplicationoperations.Theresultofaddingormultiplyingtwonaturalnumbersisstillanaturalnumber,anditcanalsobesubtractedordivided,buttheresultsofsubtractionanddivisionarenotnecessarilynaturalnumbers,sothesubtractionanddivisionoperationsareinthenaturalnumbersetItisnotalwayspossible.Naturalnumbersarethemostbasiccategoryofallnumbersthatpeopleknow.Inordertomakethenumbersystemhavearigorouslogicalfoundation,mathematiciansinthe19thcenturyestablishedtwoequivalenttheoriesofnaturalnumbers:theordinalnumbertheoryandthecardinalnumbertheoryofnaturalnumbers.Theconcept,operationandrelatedpropertiesofnaturalnumbersarestrictlydiscussed.
Ordinalnumbertheory
ItwasproposedbytheItalianmathematicianGiuseppePeano.Hesummarizedthepropertiesofnaturalnumbersandgavethefollowingdefinitionsofnaturalnumbersusingaxioms.
NaturalnumbersetNreferstothesetthatmeetsthefollowingconditions:
INcontainsoneelement,denotedas1.
IINeveryelementacanfindanelementinNasitssuccessor,rememberAsa'.
Ⅲ0'=1.
IV0isnotthesuccessorofanyelement.
ⅤDifferentelementshavedifferentsuccessors.
Ⅵ(Inductionaxiom)ForanysubsetMofN,if1∈M,andaslongasacanbelaunchedinManda'isalsoinM,thenM=N.
Cardinalnumbertheory
Thecardinalnumbertheorydefinesnaturalnumbersasthecardinalnumbersofafiniteset.Thistheoryproposesthattwofinitesetsthatcanestablishaone-to-onecorrespondencebetweenelementshaveacommonThisfeatureiscalledcardinality.Inthisway,allsingleelementsets{x},{y},{a},{b},etc.Havethesamebase,denotedas1.Similarly,anysetthatcanestablishaone-to-onecorrespondencewithtwofingershasthesamebase,whichisrecordedas2,andsoon.Theadditionandmultiplicationofnaturalnumberscanbedefinedinordinalorcardinalnumbertheory,andtheoperationsunderthetwotheoriesareconsistent.
Naturalnumbersplayaveryimportantroleindailylife,andpeopleusenaturalnumbersextensively.Naturalnumbersaretheearliestnumbersinhumanhistory.Naturalnumbershaveawiderangeofapplicationsincountingandmeasurement.Peopleoftenusenaturalnumberstolabelorrankthings,suchascitybusroutes,housenumbers,andzipcodes.
Whether"0"isincludedinnaturalnumbersiscontroversial.Somepeoplethinkthatnaturalnumbersarepositiveintegers,thatis,countingfrom1;whileothersthinkthatnaturalnumbersarenon-negativeintegers,thatis,countingfrom0.Thereisnoconsensusonthisissue.However,innumbertheory,theformerismoreadopted;insettheory,thelatterismoreadopted.Inourcountry’sprimaryandsecondaryschooltextbooks,0isclassifiedasanaturalnumber.
Naturalnumbersareintegers,butnotallintegersarenaturalnumbers.
Forexample:-1,-2,-3,...areintegers,notnaturalnumbers.
Inshort,anaturalnumberisanintegergreaterthanorequalto0.
Thesetofallnon-negativeintegersiscalledthesetofnon-negativeintegers(thatis,thesetofnaturalnumbers).
Classificationofnumbers
Wecombineallnon-negativeintegerssuchas0,1,2,3,4,5,6,7,8,9,10,etc.Called"naturalnumbers".Expand1,2,3,...,9,10forwardtoobtainpositiveintegers1,2,3,...,9,10,11,...,andexpanditbackwardtoobtainnegativeintegers...,-11,-10,-9,...,-3,-2,-1,the"0"betweenthepositiveandnegativeintegersisaneutralnumber;putthemtogethertoget...,-11,-10,-9,...,-3,-2,-1,0,1,2,3,...,9,10,11,...arecalledintegers.Fouroperationscanbeperformedonintegers:addition,subtraction,multiplication,anddivision,whicharecalledthefourarithmeticoperations.Integersformaclosedsetofnumbersforaddition,subtraction,andmultiplicationoperations,andaretheobjectofresearchintheancientbranchofmathematics"numbertheory".ThefamousGermanmathematicianGausssaid:"Mathematicsisthequeenofscience,andnumbertheoryisthecrownofmathematics."Divisionoperations,suchas7/11=0.636363…,11/7=1.5714285…,arenolongerintegers,whichmeansthatintegersarenotclosedtodivisionoperations.Inordertomakethenumbersetclosedforthefourarithmeticoperationsofaddition,subtraction,multiplication,anddivision,newnumbersmustbeadded,suchas7/11,11/7,whicharetheratiooftwointegers,calledcomparablenumbers,fractions,andnowCommonlyknownasrationalnumbers.
Summarizeandorganizethepropertiesofnumbers,thefourarithmeticoperationsbetweennumbersandtheexperienceintheapplicationprocesstoformtheoldestmathematics-arithmetic.Thesetofrationalnumbersformsaclosedsetofnumbersforthefourarithmeticoperationsofaddition,subtraction,multiplication,anddivision,whichseemstobeverycomplete.Morethan2500yearsago,manypeople,andevensomemathematiciansatthattime,thoughtthisway.
Inthe5thcenturyBC,thePythagoreanschoolatthattimeattachedgreatimportancetointegersandwantedtouseittoexplaineverything."Numbersarethefoundationofallthings"becametheirphilosophy.ThediscoveryofirrationalnumberswasafatalblowtothePythagoreanphilosophybasedonintegers.Inthehistoryofmathematics,thisincidentwascalledthe"firstmathematicscrisis."Afterthat,manyirrationalnumberswerediscovered,andthepiratioisthemostimportantone.Inthe15thcentury,thefamousItalianpainterLeonardocalleditthe"irrationalnumber".Now,peoplecombinerationalnumbersandirrationalnumberstogetherandcallthem"realnumbers".Fromthiswegettwosolutions:sum,aretheystillsolutionsof(2)?Ifyouthinkitisnot,thereisnosolutionto(2),andsolvingtheequationislikeenteringadeadend.Inordertosolvethisproblem,mathematicianshavetoexpandtherangeofnumbersagain,introducingthesymbol"i"torepresent"squarerootof-1",thatis,,whichiscalledimaginarynumber;andthenrealnumbera,bandimaginarynumbersarecombinedtoformaformofnumber,called"pluralnumber".Foralongperiodoftime,peoplecouldnotfindthequantityrepresentedbyimaginaryandpluralnumbersinreallife,whichmadepeoplefeelabitillusory.Withthedevelopmentofscience,imaginarynumbershavebeenwidelyusedinthefieldsofhydraulics,graphics,andaviation.Inthisway,thefamilyofnumbersisfurtherexpandedtoincludethetwocategoriesofrealnumbersandimaginarynumbers,andtheaddition,subtraction,multiplication,anddivisionareextendedtoincludepowersandsquareroots,forminganewbranchofmathematics"algebra".Algebrahasfurtherdevelopedintwoaspects.Oneistostudyasystemoflinearequationswithmoreunknowns,andtointroducesymbolsandconceptssuchasmatrices,vectors,andspacestoform"linearalgebra";theotheristostudyhigher-orderequationswithhigherdegreesofunknownstoform"PolynomialAlgebra"(alsocalled"PolynomialTheory").Inthisway,theobjectofalgebraresearchisnotonlynumbers,butalsomatrices,vectors,vectorspacesandtheirtransformations.Theycanallbe"arithmetic",althoughitisalsocalledadditionormultiplication,butthebasicoperationlawsaboutnumbersaresometimesnolongervalid.Therefore,thecontentofalgebracanbesummarizedasasetofsomealgebraicstructureswithoperations,suchasgroups,rings,fields,etc.,aswellasmanybranchessuchasabstractalgebra,Booleanalgebra,relationalalgebra,andcomputeralgebra.DuetothedevelopmentofscienceandtechnologyAsneeded,therangeofnumberscontinuestoexpand,frompositiveintegers,naturalnumbers,integers,realnumberstocomplexnumbers,andthentovectors,tensors,matrices,groups,rings,domains,andsoon.Forthesakeofdistinction,peoplecallrealnumbersandcomplexnumbers"narrownumbers",andvectors,tensors,andmatricesarecalled"generalizednumbers".Althoughpeoplestillhavedifferentopinionsonhowtoclassifynumbers,theyalladmitthattheconceptofnumberswillcontinuetoexpandanddevelop.
Thestorageformatofnumbers
Thestorageformatofnumbersisthestorageorderofnumbers.Whenexpressingthesizeofthevalue,onebyte(byte)canonlyexpress255(0xFF)atmost,whichisfarfromenough.Inordertomeettheactualneedsofuse,usually2,4or8bytesareusedtorepresentthesizeofthevalue.Inthecaseofusingmultiplebytestorepresentvalues,thereisanorderproblem.Therearetwostoragesequencesfornumbers-Big-endianformatandLittle-endianformat.
Theunitofnumber
TheYellowEmperoristhelaw,andnumberhastens.It'sveryuseful,buttherearethreeYan.Tenth-class,100million,trillion,Jing,Gai,Zi,soil,ditch,Jian,Zheng,Zai.Thethirdclassiscalledupper,middleandlower.Thenextnumberwillbechangedintentoten.Iftentrillionisabillion,abillionisatrillion,andtentrillionisadayinBeijing.Inthemiddleofthenumber,everythingchanges,ifyousayamillionisabillion,atrillionisatrillion,andamillionisacapital.Thosewhoareinthetopcountwillchangeiftheyarepoor.Frombillionstoyears,finallygreatdevelopment.Thecountissimpleandshort,buttheplanisendless.Onthenumberofmacros,theworldisnotavailable.Therefore,FuYe,preferredtothemiddlenumberears.
YuShiasked:"Mister'swords,thenumberofpeoplewhoarepoorwillchange.Nowthatthecloudfinallyevolves,theevolvementislimited,sowhyisit[infinite]poor?"
Thegentlemanlaughedandsaid:"Gaiweithinksaboutears.Countingforuse,emphasisonwordswillchange,makesmallandbig,addcirculation.Theprincipleofcirculationisendless.Almost."
Forthosewhoarebothsmallandbig,pleaseaddDong's"ThreeGradesofShushu".Addingandupdatingisannoying,so[omitted]Yan.
Largenumbers | |||||||
One 100 | 十 101 | 100 102 | 1,000 103 | 10,000 104 | Onehundredthousand 105 | million 106 | Tenmillion 107 |
Billion 108 | Billion 109 | Tenbillion 1010 | thousandsBillion 1011 | Trillion 1012 | TenTrillion 1013 | Tillions 1014 | Trillions 1015 |
Mega 1016 | Tenmegabytes 1017 | 100megabytes 1018 | Gigabit 1019 | 10G p>1020 | 100,000trillion 1021 | Milliontrillion 1022 | 10milliontrillion 1023 |
京 1024 | TenJing 1025 | BaiJing 1026 | Qianjing 1027 | WanJing 1028 | OneHundredThousandJing 1029 | MillionJing 1030 | TenmillionJing 1031 |
Gai 1032 | ShiGai 1033 | BaiGai 1034 | QianGai 1035 | WanGai 1036 | Onehundredthousandgai 1037 | onehundredthousandgai 1038 | MillionGai 1039 |
Zi 1040 | TenZi 1041 | Baizi 1042 | QianZi 1043 | WanZi 1044 | OnehundredthousandZi 1045 | MillionZi 1046 | MillionZi 1047 |
Rang 1048 | Tensoils 1049 | Baisoils 1050 | Thousandsoils 1051 | Wansoils 1052 | Onehundredthousandsoil 1053 | Onemillionsoil 1054 | Tenmillionsoil 1055 |
ditch 1056 | Shigou 1057 | 100Ditch 1058 | 1000ditch 1059 | Wangou 1060 | Shiwangou p>1061 | Milliongrooves 1062 | Tenmillionditch 1063 |
Jiang 1064 | TenJian 1065 | HundredStreams 1066 | ThousandStreams p>1067 | Wanjian 1068 | Onehundredthousandstreams 1069 | Millionstreams 1070 | tensofmillionsofstreams 1071 |
True 1072 | TenZheng p>1073 | Baizheng 1074 | Qianzheng 1075 | Wanzheng 1076 | OnehundredthousandZheng 1077 | Millionpositives 1078 | Tenmillionpositives 1079 |
Load 1080 | Tenyears 1081 | Hundredyears 1082 | 1,000years 1083 | 10,000years 1084 | 100,000years 1085 | Onemillionloads 1086 | TenThousandYears 1087 |
very 1088 | 十极 1089 | Baiji 1090 | Qianji 1091 | Wanji 1092 | Onehundredthousandpoles 1093 | Onemillionpoles 1094 | 10,000poles 1095 |
TheGangesSand 1096 | TenGangesSand 1097 | BaigangRiverSand 1098 | ThousandHengRiverSand 1099 | WanHengRiverSand p>10100 | OnehundredthousandGangessand 10101 | MillionsofGangesSand 10102 | TenmillionGangessand 10103 |
ASengyou 10104 | 10ASengyou 10105 | BaiASengXun 10106 | QianASengXun 10107 | WanASengyou 10108 | OneHundredThousandAMonk 10109 | OneMillionAMonk 10110 | Tenthousandmonks 10111 |
Nayouta 10112 | Shinayuta 10113 | Binayuta 10114 | ChiNaYuta 10115 | WannaYuta 10116 | OneHundredNayuta 10117 | MillionNayuta 10118 | MillionNayuta 10119 |
Unbelievable 10120 | Tenincredible 10121 | Onehundredincredible 10122 | Thousandsofincredible 10123 | Unbelievable 10124 | Onehundredthousandincredible 10125 | 100Unbelievable 10126 | Unbelievable 10127 |
UnquantifiedNet 10128 | TenJing 10129 | BaiJing 10130 | Qianjing 10131 | Onehundredthousandnet 10132 | Onehundredthousandnet 10133 | OneMillionNet 10134 | ThousandsWanjing 10135 |
clear 10136 | TenQing 10137 | OnehundredQing 10138 | ThousandQing 10139 | WanQing 10140 | OnehundredthousandQing 10141 | MillionQing 10142 | TenThousandClear 10143 |
Empty 10144 | |||||||
decimals | |||||||
One 100 | 分 10-1 | PCT 10-2 | Miles 10-3 | Silk 10-4 | Neglect 10-5 | Micro 10-6 | fiber 10-7 |
Sand 10-8 | Millionsofdust 10-9 | Millionsofdust 10-10 | Onehundredthousanddust 10-11 | WanDust 10-12 | ThousandDust 10-13 | Baichen 10-14 | TenDust 10-15 |
Dust 10-16 | TenThousandAngstroms 10-17 | MillionAngstroms 10-18 | OnehundredthousandAngstroms 10-19 | WanAi 10-20 | ThousandAngstroms 10-21 | OnehundredAngstroms 10-22 | TenAngstroms 10-23 |
Angstrom 10-24 | MillionMiao 10-25 | MillionMiao 10-26 | td>OneHundredThousandMiao 10-27 | WanMiao 10-28 | ThousandMiao 10-29 | OnehundredMiao 10-30 | TenMiao 10-31 |
Miao 10-32 | MillionDesert 10-33 | MillionDesert 10-34 | 100,000desert 10-35 | WanMo 10-36 | QianMo 10-37 | BaiDesert 10-38 | TenDesert 10-39 |
Desert 10-40 | Don'tbefuzzy 10-41 | Millionsofblur 10-42 | Onehundredthousandfuzzy 10-43 | 10,000fuzzy 10-44 | Thousandfuzzy 10-45 | HundredFuzzy 10-46 | TenFuzzy 10-47 |
Fuzzy 10-48 | Tenmillionpatrol 10-49 | Millionpatrol 10-50 | Onehundredthousandpatrol 10-51 | WanfuTour 10-52 | QianfuTour 10-53 | Baifuxun 10-54 | Tenpatrol 10-55 |
Tenpatrol >10-56 | Besuretowait 10-57 | Onemillionmustaches 10-58 | Onehundredthousandmustaches 10-59 | Wanxuwan 10-60 | Qianxuan 10-61 | 100xuan p>10-62 | TenXuyan 10-63 |
Summary 10-64 | Tenmillioninaflash 10-65 | millionMoment 10-66 | Onehundredthousandmoments 10-67 | Thousandsofmoments 10-68 | ThousandsInstantaneous 10-69 | Hundredinstantaneous 10-70 | TenMoments 10-71 |
Quiet 10-72 | TenThousandFingers 10-73 | Onemillionsnaps 10-74 | Onehundredthousandsnaps 10-75 | Tenthousandsnaps 10-76 | Athousandsnaps 10-77 | Onehundredsnaps 10-78 | Tensnaps 10-79 |
SnapFinger 10-80 | TenThousandMoments 10-81 | MillionMoments 10-82 | Onehundredthousandinstants 10-83 | Wanshana 10-84 | Thousandsuna 10-85 | BaishaNa 10-86 | TenMoments 10-87 |
Moments 10-88 | Tenthousandsixvirtues 10-89 | Onemillionsixvirtues 10-90 | Onehundredthousandsixvirtues 10-91 | WanLiuDe 10-92 | ThousandSixDes 10-93 | BaiLiude 10-94 | SixteenVirtues 10-95 |
SixVirtues 10-96 | Millionsofvirtual 10-97 | Onemillionvirtual 10-98 | Onehundredthousandvirtual p>10-99 | Wanxu 10-100 | Thousandvirtual 10-101 | Hundredvirtual 10-102 | Tenvirtual 10-103 |
Virtual 10-104 | Tenmillionempty 10-105 | Millionempty 10-106 | Onehundredthousandempty 10-107 | WanKong 10-108 | ThousandsofAir 10-109 | Baikong 10-110 | Tenempty 10-111 |
empty 10-112 | TenThousandClear 10-113 | Onemillionclearing 10-114 | Onehundredthousandclearing 10-115 | Wanqing 10-116 | ThousandsofQing 10-117 | HundredsofQing 10-118 | TenQing 10-119 |
clear 10-120 | tenmillionNet 10-121 | MillionNet 10-122 | Onehundredthousandnet 10-123 | Wanjing 10-124 | Qianjing 10-125 | Baijing 10-126 | 10Net 10-127 |
Netunlimited 10-128 | It'sincredible 10-129 | Onemillionincredible 10-130 | Onehundredthousandincredible 10-131 | Unbelievable 10-132 | Athousandincredible 10-133 | Onehundredincredible 10-134 | Tenincredible 10-135 |
Unbelievable 10-136 | MillionNayuta 10-137 | MillionNayuta 10-138 | OnehundredthousandNayutaHe 10-139 | WannaYuta 10-140 | ChiNaYuta 10-141 | Bainayuta 10-142 | Shinayuta 10-143 |
Nayouta 10-144 |
ChineseclassicsfromtheHanDynastytotheQingDynastyhavealwaysbeeninthemillion-digitsystem,butJapan's"DustandTribulation"adoptsthemillion-digitsystem.TherearealsodifferencesbetweenChinaandJapan:China’slargestisinfinitenumbers,andthesmallestisnet.Japandoesnothaveinfinitenumbers.Instead,itisinfinite,whichisthelargestItislargenumber,andthesmallestisangstroms.InChina,therearenomulti-syllablenumeralssuchasempty,clean,andalaya.ZhuShijie,amathematicianintheYuanDynastyofChina,andhis"EnlightenmentofMathematicalStudies"creatively(perhapsreferringtothe"HuaYanJing"and"TheLawofMonks")inheritedtheMathematicianXuYueoftheEasternHanDynastyandtheTangandSongDynasties.ThemathematicianXieChawei’s"FaMengShuJing"expandstheChineselargenumbersanddecimalsto10±128(10100meansWanGangSha,10-100meanswanxu).InXuYue's"SuccessofNumbers","numbersareused,theemphasisofwordschanges,thesmallandthebig,andthecycleisadded.Theprincipleofcycle,thereisnolimit."AndtheexpansionofChina'slargenumbersanddecimalsatthesametimeIt's10±∞.ThesearebeyondthereachofJapan's"DustTribulation".
Latest: collision
Next: Chemical etching