number

honggarae 22/03/2022 961

Birthanddevelopment

"Number"istheconceptofmeasuringthings.Itistheconsciousexpressionofthequantitythatexistsobjectively."Numbers"originatedfromthesymbolsusedbyprimitivehumanstocountandformnaturalnumbers"numbers".Itisoneofthegreatestinventionsofmankind,andisthebasisforhumanstoaccuratelydescribethings.Inthelonghistoryofmankind,

1°obtainednumbersbycountingrealthings;

2°numberscanbecalculatedincertainways;

p>

3°Whenthenumberisrelatedtospacethings,itcanindicatethenumberofthesethings.(Fromtheoriginalnumbertheoryofnaturalnumbers)

Afewyearsago,inordertosurvive,humanancestorsoftenlivedingroupswithdozensofpeopletogether.Theyworktogetherduringtheday,huntingforbeasts,birds,orcollectingfruitfood;atnight,theyliveincavesandsharetheirlaborincome.Inthelong-termjointlaborandlife,theygraduallyreachedapointwheretheyhadtosaysomething,andlanguagecameintobeing.Theycanusesimplelanguagemixedwithgesturestoexpressfeelingsandexchangeideas.Withthedevelopmentoflaborcontent,theirlanguagehasalsocontinuedtodevelop,finallysurpassingthelanguageofallotheranimals.Oneofthemainsignsisthatlanguagecontainsthecolorofarithmetic.

Theyhuntedandreturned,andtheirpreywaseitherwithorwithout,sothereweretwoconceptsof"being"and"nothing".Forafewdaysinarow,ifthereisnoanimaltocatch,therewillbenomeattoeat,andtheconceptsof“have”and“nothing”willgraduallydeepen.

Later,gregariousnessdevelopedintotribes.Thetribeismadeupoffamilieswithfewmembers.Theso-called"being"isdividedintofourtypes:"one","two","three",and"multiple"(sometribesdon'tevenhave"three").Anynumbergreaterthan"three",theyareunderstoodas"many"or"abunch"or"agroup".Althoughsomechiefsareelders,theycan’ttellhowmanykindsofbeastshehascapturedandhowmanykindsoftreeshehasseen.Chantitout.However,nomatterwhat,theycanalreadyusetheirhandstosaysomethinglikethis(withonefingerpointingtothedeer,threefingerspointingtothearrow):"Toexchangeformeadeer.Youhavetogivemethreearrows."Thisisanarithmeticthattheydidn'thaveatthetime.knowledge.

About10,000yearsago,theglacierretreated.SomeStoneAgehunterswhowereengagedinnomadismstartedanewwayoflifeinthemountainsoftheMiddleEast-farminglife.Theyencounteredproblemssuchashowtorecordthedate,season,andhowtocountthenumberofgrainsandseedsinthecollection.EspeciallywhenmorecomplexagriculturalsocietiesweredevelopedintheNileValley,TigrisandEuphratesriverbasins,theyalsoencounteredtheproblemofpayingtaxes.Thisrequiresthenumbertohaveaname.Andthecountingmustbemoreaccurate,only"one","two","three","more"isfarfromenough.

BetweentheTigrisandtheEuphratesandaroundthetworivers,itiscalledMesopotamia.Therewasaculturethat,liketheEgyptianculture,isalsooneoftheoldestintheworld.AlthoughtheMesopotamiansandtheEgyptianswerefarapart,theyestablishedtheearliestsystemofwritingnaturalnumbersinthesameway-makingmarksontreesorstonestorecordthepassingdays.Althoughtheshapesofnumbersaredifferent,theyhavesomethingincommon.Theyallusesinglestrokestorepresent"one".

Later(especiallyaftertheysettledinthevillage),theygraduallyreplacedthenotcheswithsymbols,thatis,onesymbolrepresentsonething,twosymbolsrepresenttwothings,andsoon.Thecountingmethodlastedforalongtime.About5000yearsago,Egyptianpriestshadwrittennumbersymbolsonakindofstrawpapermadeofreeds,whileMesopotamianpriestshadwrittenthemonsoftclaytablets.Inadditiontostillusingsinglestrokestorepresent"-",theyalsouseothersymbolstorepresent"+"orlargernaturalnumbers;theyrepeatedlyusethesesinglestrokesandsymbolstorepresenttherequirednumbers.

In1500BC,thePeruvianInca(apartoftheIndians)inSouthAmericawereusedto"knotcounting"-everytimeabundleofcropswerecollected,theytiedaknotontheropeandusedaknot.Torecordtheharvest."Knot"hasthesameeffectasmarks,andisalsousedtoexpressnaturalnumbers.Accordingtotherecordoftheancientbook"IChing"inmycountry,theChineseinancienttimesalso"ruledbyknottingtherope",whichusedthemethodoftyingknotsontheropetorecordthenumberofevents.Later,itwaschangedto"bookdeed",thatis,aknifewasusedtomakemarksonbambooorwoodtocountnumbers.Useastroketorepresent"one".Tothisday,weChinesestilloftenusetheword"zheng"tocountnumbers.Eachstrokerepresents"one".Ofcourse,theword"zheng"alsocontainsthemeaningof"everyfiveadvancesintoone".

Naturalnumbers

Whencountingthings,thenumbers0,1,2,3,4,5,6,7,8,9,...arecallednaturalnumbers.

Naturalnumbershavetwomeanings:quantityandorder,whicharedividedintocardinalnumbersandordinalnumbers.Thebasicunitis1,andthecountingunitsareone,ten,onehundred,onethousand,tenthousand,etc.

Classification

Accordingto"canbedivisibleby2",itcanbedividedinto:oddandeven.

Accordingtothe"numberoffactors",itcanbedividedinto:primenumbersandcompositenumbers.

Usedtomeasurethenumberofthingsorthenumberthatindicatestheorderofthings.Thatis,thenumbersrepresentedbythenumbers0,1,2,3,4,...Naturalnumbersstartfrom0,oneafteranother,forminganinfinitegroup.Thenaturalnumbersethasadditionandmultiplicationoperations.Theresultofaddingormultiplyingtwonaturalnumbersisstillanaturalnumber,anditcanalsobesubtractedordivided,buttheresultsofsubtractionanddivisionarenotnecessarilynaturalnumbers,sothesubtractionanddivisionoperationsareinthenaturalnumbersetItisnotalwayspossible.Naturalnumbersarethemostbasiccategoryofallnumbersthatpeopleknow.Inordertomakethenumbersystemhavearigorouslogicalfoundation,mathematiciansinthe19thcenturyestablishedtwoequivalenttheoriesofnaturalnumbers:theordinalnumbertheoryandthecardinalnumbertheoryofnaturalnumbers.Theconcept,operationandrelatedpropertiesofnaturalnumbersarestrictlydiscussed.

Ordinalnumbertheory

ItwasproposedbytheItalianmathematicianGiuseppePeano.Hesummarizedthepropertiesofnaturalnumbersandgavethefollowingdefinitionsofnaturalnumbersusingaxioms.

NaturalnumbersetNreferstothesetthatmeetsthefollowingconditions:

INcontainsoneelement,denotedas1.

IINeveryelementacanfindanelementinNasitssuccessor,rememberAsa'.

Ⅲ0'=1.

IV0isnotthesuccessorofanyelement.

ⅤDifferentelementshavedifferentsuccessors.

Ⅵ(Inductionaxiom)ForanysubsetMofN,if1∈M,andaslongasacanbelaunchedinManda'isalsoinM,thenM=N.

Cardinalnumbertheory

Thecardinalnumbertheorydefinesnaturalnumbersasthecardinalnumbersofafiniteset.Thistheoryproposesthattwofinitesetsthatcanestablishaone-to-onecorrespondencebetweenelementshaveacommonThisfeatureiscalledcardinality.Inthisway,allsingleelementsets{x},{y},{a},{b},etc.Havethesamebase,denotedas1.Similarly,anysetthatcanestablishaone-to-onecorrespondencewithtwofingershasthesamebase,whichisrecordedas2,andsoon.Theadditionandmultiplicationofnaturalnumberscanbedefinedinordinalorcardinalnumbertheory,andtheoperationsunderthetwotheoriesareconsistent.

Naturalnumbersplayaveryimportantroleindailylife,andpeopleusenaturalnumbersextensively.Naturalnumbersaretheearliestnumbersinhumanhistory.Naturalnumbershaveawiderangeofapplicationsincountingandmeasurement.Peopleoftenusenaturalnumberstolabelorrankthings,suchascitybusroutes,housenumbers,andzipcodes.

Whether"0"isincludedinnaturalnumbersiscontroversial.Somepeoplethinkthatnaturalnumbersarepositiveintegers,thatis,countingfrom1;whileothersthinkthatnaturalnumbersarenon-negativeintegers,thatis,countingfrom0.Thereisnoconsensusonthisissue.However,innumbertheory,theformerismoreadopted;insettheory,thelatterismoreadopted.Inourcountry’sprimaryandsecondaryschooltextbooks,0isclassifiedasanaturalnumber.

Naturalnumbersareintegers,butnotallintegersarenaturalnumbers.

Forexample:-1,-2,-3,...areintegers,notnaturalnumbers.

Inshort,anaturalnumberisanintegergreaterthanorequalto0.

Thesetofallnon-negativeintegersiscalledthesetofnon-negativeintegers(thatis,thesetofnaturalnumbers).

Classificationofnumbers

Wecombineallnon-negativeintegerssuchas0,1,2,3,4,5,6,7,8,9,10,etc.Called"naturalnumbers".Expand1,2,3,...,9,10forwardtoobtainpositiveintegers1,2,3,...,9,10,11,...,andexpanditbackwardtoobtainnegativeintegers...,-11,-10,-9,...,-3,-2,-1,the"0"betweenthepositiveandnegativeintegersisaneutralnumber;putthemtogethertoget...,-11,-10,-9,...,-3,-2,-1,0,1,2,3,...,9,10,11,...arecalledintegers.Fouroperationscanbeperformedonintegers:addition,subtraction,multiplication,anddivision,whicharecalledthefourarithmeticoperations.Integersformaclosedsetofnumbersforaddition,subtraction,andmultiplicationoperations,andaretheobjectofresearchintheancientbranchofmathematics"numbertheory".ThefamousGermanmathematicianGausssaid:"Mathematicsisthequeenofscience,andnumbertheoryisthecrownofmathematics."Divisionoperations,suchas7/11=0.636363…,11/7=1.5714285…,arenolongerintegers,whichmeansthatintegersarenotclosedtodivisionoperations.Inordertomakethenumbersetclosedforthefourarithmeticoperationsofaddition,subtraction,multiplication,anddivision,newnumbersmustbeadded,suchas7/11,11/7,whicharetheratiooftwointegers,calledcomparablenumbers,fractions,andnowCommonlyknownasrationalnumbers.

Summarizeandorganizethepropertiesofnumbers,thefourarithmeticoperationsbetweennumbersandtheexperienceintheapplicationprocesstoformtheoldestmathematics-arithmetic.Thesetofrationalnumbersformsaclosedsetofnumbersforthefourarithmeticoperationsofaddition,subtraction,multiplication,anddivision,whichseemstobeverycomplete.Morethan2500yearsago,manypeople,andevensomemathematiciansatthattime,thoughtthisway.

Inthe5thcenturyBC,thePythagoreanschoolatthattimeattachedgreatimportancetointegersandwantedtouseittoexplaineverything."Numbersarethefoundationofallthings"becametheirphilosophy.ThediscoveryofirrationalnumberswasafatalblowtothePythagoreanphilosophybasedonintegers.Inthehistoryofmathematics,thisincidentwascalledthe"firstmathematicscrisis."Afterthat,manyirrationalnumberswerediscovered,andthepiratioisthemostimportantone.Inthe15thcentury,thefamousItalianpainterLeonardocalleditthe"irrationalnumber".Now,peoplecombinerationalnumbersandirrationalnumberstogetherandcallthem"realnumbers".Fromthiswegettwosolutions:sum,aretheystillsolutionsof(2)?Ifyouthinkitisnot,thereisnosolutionto(2),andsolvingtheequationislikeenteringadeadend.Inordertosolvethisproblem,mathematicianshavetoexpandtherangeofnumbersagain,introducingthesymbol"i"torepresent"squarerootof-1",thatis,,whichiscalledimaginarynumber;andthenrealnumbera,bandimaginarynumbersarecombinedtoformaformofnumber,called"pluralnumber".Foralongperiodoftime,peoplecouldnotfindthequantityrepresentedbyimaginaryandpluralnumbersinreallife,whichmadepeoplefeelabitillusory.Withthedevelopmentofscience,imaginarynumbershavebeenwidelyusedinthefieldsofhydraulics,graphics,andaviation.Inthisway,thefamilyofnumbersisfurtherexpandedtoincludethetwocategoriesofrealnumbersandimaginarynumbers,andtheaddition,subtraction,multiplication,anddivisionareextendedtoincludepowersandsquareroots,forminganewbranchofmathematics"algebra".Algebrahasfurtherdevelopedintwoaspects.Oneistostudyasystemoflinearequationswithmoreunknowns,andtointroducesymbolsandconceptssuchasmatrices,vectors,andspacestoform"linearalgebra";theotheristostudyhigher-orderequationswithhigherdegreesofunknownstoform"PolynomialAlgebra"(alsocalled"PolynomialTheory").Inthisway,theobjectofalgebraresearchisnotonlynumbers,butalsomatrices,vectors,vectorspacesandtheirtransformations.Theycanallbe"arithmetic",althoughitisalsocalledadditionormultiplication,butthebasicoperationlawsaboutnumbersaresometimesnolongervalid.Therefore,thecontentofalgebracanbesummarizedasasetofsomealgebraicstructureswithoperations,suchasgroups,rings,fields,etc.,aswellasmanybranchessuchasabstractalgebra,Booleanalgebra,relationalalgebra,andcomputeralgebra.DuetothedevelopmentofscienceandtechnologyAsneeded,therangeofnumberscontinuestoexpand,frompositiveintegers,naturalnumbers,integers,realnumberstocomplexnumbers,andthentovectors,tensors,matrices,groups,rings,domains,andsoon.Forthesakeofdistinction,peoplecallrealnumbersandcomplexnumbers"narrownumbers",andvectors,tensors,andmatricesarecalled"generalizednumbers".Althoughpeoplestillhavedifferentopinionsonhowtoclassifynumbers,theyalladmitthattheconceptofnumberswillcontinuetoexpandanddevelop.

Thestorageformatofnumbers

Thestorageformatofnumbersisthestorageorderofnumbers.Whenexpressingthesizeofthevalue,onebyte(byte)canonlyexpress255(0xFF)atmost,whichisfarfromenough.Inordertomeettheactualneedsofuse,usually2,4or8bytesareusedtorepresentthesizeofthevalue.Inthecaseofusingmultiplebytestorepresentvalues,thereisanorderproblem.Therearetwostoragesequencesfornumbers-Big-endianformatandLittle-endianformat.

Theunitofnumber

TheYellowEmperoristhelaw,andnumberhastens.It'sveryuseful,buttherearethreeYan.Tenth-class,100million,trillion,Jing,Gai,Zi,soil,ditch,Jian,Zheng,Zai.Thethirdclassiscalledupper,middleandlower.Thenextnumberwillbechangedintentoten.Iftentrillionisabillion,abillionisatrillion,andtentrillionisadayinBeijing.Inthemiddleofthenumber,everythingchanges,ifyousayamillionisabillion,atrillionisatrillion,andamillionisacapital.Thosewhoareinthetopcountwillchangeiftheyarepoor.Frombillionstoyears,finallygreatdevelopment.Thecountissimpleandshort,buttheplanisendless.Onthenumberofmacros,theworldisnotavailable.Therefore,FuYe,preferredtothemiddlenumberears.

YuShiasked:"Mister'swords,thenumberofpeoplewhoarepoorwillchange.Nowthatthecloudfinallyevolves,theevolvementislimited,sowhyisit[infinite]poor?"

Thegentlemanlaughedandsaid:"Gaiweithinksaboutears.Countingforuse,emphasisonwordswillchange,makesmallandbig,addcirculation.Theprincipleofcirculationisendless.Almost."

Forthosewhoarebothsmallandbig,pleaseaddDong's"ThreeGradesofShushu".Addingandupdatingisannoying,so[omitted]Yan.

td>

Largenumbersnumber

One

100

101

100

102

1,000

103

10,000

104

Onehundredthousand

105

million

106

Tenmillion

107

Billion

108

Billion

109

Tenbillion

1010

thousandsBillion

1011

Trillion

1012

TenTrillion

1013

Tillions

1014

Trillions

1015

Mega

1016

Tenmegabytes

1017

100megabytes

1018

Gigabit

1019

10G

p>

1020

100,000trillion

1021

Milliontrillion

1022

10milliontrillion

1023

1024

TenJing

1025

BaiJing

1026

Qianjing

1027

WanJing

1028

OneHundredThousandJing

1029

MillionJing

1030

TenmillionJing

1031

Gai

1032

ShiGai

1033

BaiGai

1034

QianGai

1035

WanGai

1036

Onehundredthousandgai

1037

onehundredthousandgai

1038

MillionGai

1039

Zi

1040

TenZi

1041

Baizi

1042

QianZi

1043

WanZi

1044

OnehundredthousandZi

1045

MillionZi

1046

MillionZi

1047

Rang

1048

Tensoils

1049

Baisoils

1050

Thousandsoils

1051

Wansoils

1052

Onehundredthousandsoil

1053

Onemillionsoil

1054

Tenmillionsoil

1055

ditch

1056

Shigou

1057

100Ditch

1058

1000ditch

1059

Wangou

1060

Shiwangou

p>

1061

Milliongrooves

1062

Tenmillionditch

1063

Jiang

1064

TenJian

1065

HundredStreams

1066

ThousandStreams

p>

1067

Wanjian

1068

Onehundredthousandstreams

1069

Millionstreams

1070

tensofmillionsofstreams

1071

True

1072

TenZheng

p>

1073

Baizheng

1074

Qianzheng

1075

Wanzheng

1076

OnehundredthousandZheng

1077

Millionpositives

1078

Tenmillionpositives

1079

Load

1080

Tenyears

1081

Hundredyears

1082

1,000years

1083

10,000years

1084

100,000years

1085

Onemillionloads

1086

TenThousandYears

1087

very

1088

十极

1089

Baiji

1090

Qianji

1091

Wanji

1092

Onehundredthousandpoles

1093

Onemillionpoles

1094

10,000poles

1095

TheGangesSand

1096

TenGangesSand

1097

BaigangRiverSand

1098

ThousandHengRiverSand

1099

WanHengRiverSand

p>

10100

OnehundredthousandGangessand

10101

MillionsofGangesSand

10102

TenmillionGangessand

10103

ASengyou

10104

10ASengyou

10105

BaiASengXun

10106

QianASengXun

10107

WanASengyou

10108

OneHundredThousandAMonk

10109

OneMillionAMonk

10110

Tenthousandmonks

10111

Nayouta

10112

Shinayuta

10113

Binayuta

10114

ChiNaYuta

10115

WannaYuta

10116

OneHundredNayuta

10117

MillionNayuta

10118

MillionNayuta

10119

Unbelievable

10120

Tenincredible

10121

Onehundredincredible

10122

Thousandsofincredible

10123

Unbelievable

10124

Onehundredthousandincredible

10125

100Unbelievable

10126

Unbelievable

10127

UnquantifiedNet

10128

TenJing

10129

BaiJing

10130

Qianjing

10131

Onehundredthousandnet

10132

Onehundredthousandnet

10133

OneMillionNet

10134

ThousandsWanjing

10135

clear

10136

TenQing

10137

OnehundredQing

10138

ThousandQing

10139

WanQing

10140

OnehundredthousandQing

10141

MillionQing

10142

TenThousandClear

10143

Empty

10144

decimals

One

100

10-1

PCT

10-2

Miles

10-3

Silk

10-4

Neglect

10-5

Micro

10-6

fiber

10-7

Sand

10-8

Millionsofdust

10-9

Millionsofdust

10-10

Onehundredthousanddust

10-11

WanDust

10-12

ThousandDust

10-13

Baichen

10-14

TenDust

10-15

Dust

10-16

TenThousandAngstroms

10-17

MillionAngstroms

10-18

OnehundredthousandAngstroms

10-19

WanAi

10-20

ThousandAngstroms

10-21

OnehundredAngstroms

10-22

TenAngstroms

10-23

Angstrom

10-24

MillionMiao

10-25

MillionMiao

10-26

OneHundredThousandMiao

10-27

WanMiao

10-28

ThousandMiao

10-29

OnehundredMiao

10-30

TenMiao

10-31

Miao

10-32

MillionDesert

10-33

MillionDesert

10-34

100,000desert

10-35

WanMo

10-36

QianMo

10-37

BaiDesert

10-38

TenDesert

10-39

Desert

10-40

Don'tbefuzzy

10-41

Millionsofblur

10-42

Onehundredthousandfuzzy

10-43

10,000fuzzy

10-44

Thousandfuzzy

10-45

HundredFuzzy

10-46

TenFuzzy

10-47

Fuzzy

10-48

Tenmillionpatrol

10-49

Millionpatrol

10-50

Onehundredthousandpatrol

10-51

WanfuTour

10-52

QianfuTour

10-53

Baifuxun

10-54

Tenpatrol

10-55

Tenpatrol

>

10-56

Besuretowait

10-57

Onemillionmustaches

10-58

Onehundredthousandmustaches

10-59

Wanxuwan

10-60

Qianxuan

10-61

100xuan

p>

10-62

TenXuyan

10-63

Summary

10-64

Tenmillioninaflash

10-65

millionMoment

10-66

Onehundredthousandmoments

10-67

Thousandsofmoments

10-68

ThousandsInstantaneous

10-69

Hundredinstantaneous

10-70

TenMoments

10-71

Quiet

10-72

TenThousandFingers

10-73

Onemillionsnaps

10-74

Onehundredthousandsnaps

10-75

Tenthousandsnaps

10-76

Athousandsnaps

10-77

Onehundredsnaps

10-78

Tensnaps

10-79

SnapFinger

10-80

TenThousandMoments

10-81

MillionMoments

10-82

Onehundredthousandinstants

10-83

Wanshana

10-84

Thousandsuna

10-85

BaishaNa

10-86

TenMoments

10-87

Moments

10-88

Tenthousandsixvirtues

10-89

Onemillionsixvirtues

10-90

Onehundredthousandsixvirtues

10-91

WanLiuDe

10-92

ThousandSixDes

10-93

BaiLiude

10-94

SixteenVirtues

10-95

SixVirtues

10-96

Millionsofvirtual

10-97

Onemillionvirtual

10-98

Onehundredthousandvirtual

p>

10-99

Wanxu

10-100

Thousandvirtual

10-101

Hundredvirtual

10-102

Tenvirtual

10-103

Virtual

10-104

Tenmillionempty

10-105

Millionempty

10-106

Onehundredthousandempty

10-107

WanKong

10-108

ThousandsofAir

10-109

Baikong

10-110

Tenempty

10-111

empty

10-112

TenThousandClear

10-113

Onemillionclearing

10-114

Onehundredthousandclearing

10-115

Wanqing

10-116

ThousandsofQing

10-117

HundredsofQing

10-118

TenQing

10-119

clear

10-120

tenmillionNet

10-121

MillionNet

10-122

Onehundredthousandnet

10-123

Wanjing

10-124

Qianjing

10-125

Baijing

10-126

10Net

10-127

Netunlimited

10-128

It'sincredible

10-129

Onemillionincredible

10-130

Onehundredthousandincredible

10-131

Unbelievable

10-132

Athousandincredible

10-133

Onehundredincredible

10-134

Tenincredible

10-135

Unbelievable

10-136

MillionNayuta

10-137

MillionNayuta

10-138

OnehundredthousandNayutaHe

10-139

WannaYuta

10-140

ChiNaYuta

10-141

Bainayuta

10-142

Shinayuta

10-143

Nayouta

10-144

ChineseclassicsfromtheHanDynastytotheQingDynastyhavealwaysbeeninthemillion-digitsystem,butJapan's"DustandTribulation"adoptsthemillion-digitsystem.TherearealsodifferencesbetweenChinaandJapan:China’slargestisinfinitenumbers,andthesmallestisnet.Japandoesnothaveinfinitenumbers.Instead,itisinfinite,whichisthelargestItislargenumber,andthesmallestisangstroms.InChina,therearenomulti-syllablenumeralssuchasempty,clean,andalaya.ZhuShijie,amathematicianintheYuanDynastyofChina,andhis"EnlightenmentofMathematicalStudies"creatively(perhapsreferringtothe"HuaYanJing"and"TheLawofMonks")inheritedtheMathematicianXuYueoftheEasternHanDynastyandtheTangandSongDynasties.ThemathematicianXieChawei’s"FaMengShuJing"expandstheChineselargenumbersanddecimalsto10±128(10100meansWanGangSha,10-100meanswanxu).InXuYue's"SuccessofNumbers","numbersareused,theemphasisofwordschanges,thesmallandthebig,andthecycleisadded.Theprincipleofcycle,thereisnolimit."AndtheexpansionofChina'slargenumbersanddecimalsatthesametimeIt's10±∞.ThesearebeyondthereachofJapan's"DustTribulation".

Latest: collision

Next: Chemical etching