Information entropy
TheoreticalProposal
Inthepaper"AMathematicalTheoryofCommunication(AMathematicalTheoryofCommunication)"publishedin1948byCEShannon,thefatherofinformationtheory,thereisredundancyinanyinformation.Thesizeoftheremainderisrelatedtotheprobabilityoruncertaintyofeachsymbol(number,letterorword)inthemessage.
Shannondrawsontheconceptofthermodynamics,andcallstheaverageamountofinformationafterexcludingredundancyas"informationentropy",andgivesamathematicalexpressionforcalculatinginformationentropy.
Basiccontent
Usually,whatsymbolasourcesendsisuncertain,anditcanbemeasuredaccordingtotheprobabilityofitsappearance.Theprobabilityislarge,therearemanyopportunities,andtheuncertaintyissmall;otherwise,theuncertaintyislarge.
TheuncertaintyfunctionfisadecreasingfunctionoftheprobabilityP;theuncertaintygeneratedbytwoindependentsymbolsshouldbeequaltothesumoftheirrespectiveuncertainties,namelyf(P1,P2)=f(P1)+f(P2),thisiscalledadditivity.Thefunctionfthatsatisfiesthesetwoconditionsatthesametimeisalogarithmicfunction,namely.
Intheinformationsource,whatisconsideredisnottheuncertaintyofasinglesymbol,buttheaverageuncertaintyofallpossiblesituationsofthisinformationsource.Ifthesourcesymbolhasnvalues:U1…Ui…Un,thecorrespondingprobabilityis:P1…Pi…Pn,andtheappearanceofvarioussymbolsareindependentofeachother.Atthistime,theaverageuncertaintyoftheinformationsourceshouldbethestatisticalaverage(E)oftheuncertaintyofasinglesymbol-logPi,whichcanbecalledinformationentropy,thatis,,Thelogarithmintheformulagenerallytakes2asthebase,andtheunitisbit.However,otherlogarithmicbasescanalsobeused,andothercorrespondingunitscanbeused,andthebaseexchangeformulacanbeusedtoconvertbetweenthem.
Thesimplestsingle-symbolinformationsourceonlytakestwoelementsof0and1,thatis,abinaryinformationsource.ItsprobabilityisPandQ=1-P.TheentropyofthissourceisasshowninFigure1.Shown.
Ascanbeseenfromthefigure,theinformationentropyofadiscretesourcehas:
①Negative:theamountofinformationobtainedbyreceivingasourcesymbolshouldbeapositivevalue,H(U)≥0
②Symmetry:symmetricaltoP=0.5
③Certainty:H(1,0)=0,thatis,P=0orP=1Itisacertainstate,andtheamountofinformationobtainediszero
④Extreme:BecauseH(U)isanupwardconvexfunctionofP,andthefirstderivativeisequalto0whenP=0.5,sowhenP=0.5When,H(U)isthelargest.
Forcontinuousinformationsources,Shannongavecontinuousentropysimilarinformtodiscretesources.Althoughcontinuousentropyisstilladditive,itdoesnothavenon-negativeinformation.Sexisdifferentfromdiscretesources.doesnotrepresenttheamountofinformationofacontinuoussource.Thevalueofthecontinuousinformationsourceisunlimited,andtheamountofinformationisinfinite,andisafiniterelativevalue,alsoknownasrelativeentropy.However,whenthedifferencebetweenthetwoentropiesistakenasmutualinformation,itisstillnon-negative.Thisissimilartothedefinitionofpotentialenergyinmechanics.
Informationmeaning
Moderndefinition
Informationismaterial,energy,informationandThelabelofitsattributes.[InverseWienerInformationDefinition]
Informationisincreasedcertainty.[InverseShannonInformationDefinition]
Informationisacollectionofthings,phenomenaandtheirattributes.[2002]
Initialdefinition
ClaudeE.Shannon,oneoftheoriginatorsofinformationtheory,definedinformation(entropy)astheprobabilityofoccurrenceofdiscreterandomevents.
Theso-calledinformationentropyisaratherabstractconceptinmathematics.Herewemightaswellunderstandinformationentropyastheprobabilityofoccurrenceofacertainspecificinformation.Theinformationentropyandthermodynamicentropyarecloselyrelated.AccordingtoCharlesH.Bennett'sreinterpretationofMaxwell'sDemon,thedestructionofinformationisanirreversibleprocess,sothedestructionofinformationconformstothesecondlawofthermodynamics.Theproductionofinformationistheprocessofintroducingnegative(thermodynamic)entropyintothesystem.Therefore,thesignofinformationentropyandthermodynamicentropyshouldbeopposite.
Generallyspeaking,whenakindofinformationhasahigherprobabilityofoccurrence,itindicatesthatithasbeenspreadmorewidely,orinotherwords,thedegreeofcitationishigher.Wecanthinkthatfromtheperspectiveofinformationdissemination,informationentropycanrepresentthevalueofinformation.Inthisway,wehaveastandardformeasuringthevalueofinformation,andwecanmakemoreinferencesabouttheproblemofknowledgecirculation.
Calculationformula
H(x)=E[I(xi)]=E[log(2,1/P(xi))]=-∑P(xi)log(2,P(xi))(i=1,2,..n)
Amongthem,xrepresentsarandomvariable,whichcorrespondstothesetofallpossibleoutputs,definedasasymbolset,andtheoutputofarandomvariableisrepresentedbyx.P(x)representstheoutputprobabilityfunction.Thegreatertheuncertaintyofthevariable,thegreatertheentropy,andthegreatertheamountofinformationneededtofigureitout.
"TheBibleofGame"
InformationEntropy:InformationThebasicfunctionistoeliminatepeople'suncertaintyaboutthings.Aftermostoftheparticlesarecombined,valuablenumbersarestakedonitsseeminglynon-imageform.Specifically,thisisaphenomenonofinformationconfusioninthegame.
Shannonpointedoutthatitsaccurateamountofinformationshouldbe
-(p1*log(2,p1)+p2*log(2,p2)+...+p32*log(2,p32)),
Amongthem,p1,p2,...,P32aretheprobabilityofthe32teamswinningthechampionshiprespectively.Shannoncalledit"Entropy"(Entropy),generallyrepresentedbythesymbolH,andtheunitisbit.
Interestedreaderscancalculatethatwhen32teamshavethesameprobabilityofwinning,thecorrespondinginformationentropyisequaltofivebits.Readerswithamathematicalfoundationcanalsoprovethatthevalueoftheaboveformulacannotbegreaterthanfive.ForanyrandomvariableX(suchasthechampionshipteam),itsentropyisdefinedasfollows:
Thegreatertheuncertaintyofthevariable,thegreatertheentropy.TofigureouttheinformationneededThegreatertheamount.
Informationentropyisaconceptusedtomeasuretheamountofinformationininformationtheory.Themoreorderlyasystem,thelowertheinformationentropy;
Conversely,themorechaoticasystem,thehighertheinformationentropy.Therefore,informationentropycanalsobesaidtobeameasureofthedegreeofsystemorder.
Theconceptofentropyisderivedfromthermalphysics.
Assumingthattherearetwokindsofgasesaandb,whenthetwogasesarecompletelymixed,thestablestateinthermophysicscanbereached,andtheentropyisthehighestatthistime.Ifthereverseprocessistoberealized,thatis,thecompleteseparationofaandbisimpossibleinaclosedsystem.Onlyexternalintervention(information),thatis,addingsomethingorderly(energy)outsidethesystem,separatesaandb.Atthistime,thesystementersanotherstablestate,atthistime,theinformationentropyisthelowest.Thermalphysicsprovesthatinaclosedsystem,theentropyalwaysincreasestothemaximum.Toreducetheentropyofthesystem(makethesystemmoreorderly),theremustbeexternalenergyintervention.
Thecalculationofinformationentropyisverycomplicated.Theinformationwithmultiplepreconditionsisalmostimpossibletocalculate.Therefore,thevalueofinformationintherealworldcannotbecalculated.Butbecauseoftheclosecorrelationbetweeninformationentropyandthermodynamicentropy,informationentropycanbemeasuredintheprocessofattenuation.Therefore,thevalueofinformationisreflectedthroughthetransmissionofinformation.Withouttheintroductionofaddedvalue(negativeentropy),thewiderthespreadandthelongerthespreadingtime,themorevaluabletheinformation.
Entropyisfirstofallanouninphysics.
Incommunication,itreferstotheuncertaintyofinformation.Theentropyofahighdegreeofinformationisverylow,andtheentropyofalowdegreeofinformationishigh.Specifically,anyactivityprocessthatleadstoanincreaseordecreaseinthecertainty,organization,regularity,ororderofthesetofrandomeventscanbemeasuredbytheunifiedscaleofthechangeininformationentropy.
Latest: Communication optical cable