Fuzzy control
Introduction
ThefuzzymathematicscreatedbyZadehhasmadeagreatcontributiontothecontrolofambiguoussystems.Sincethe1970s,somepracticalfuzzycontrollershaveappearedoneafteranother,makingusAnotherbigstepforwardinthefieldofcontrol.
FuzzyLogicControlisabbreviatedasFuzzyControl,whichisacomputerdigitalcontroltechnologybasedonfuzzysettheory,fuzzylinguisticvariablesandfuzzylogicinference.In1965,L.A.ZadehoftheUnitedStatesfoundedthefuzzysettheory;in1973,hegavethedefinitionoffuzzylogiccontrolandrelatedtheorems.In1974,BritishE.H.Mamdaniformedafuzzycontrollerbasedonfuzzycontrolstatementsforthefirsttime,andappliedittothecontrolofboilersandsteamengines,whichachievedsuccessinthelaboratory.Thispioneeringworkmarkedthebirthoffuzzycybernetics.
Fuzzycontrolisessentiallyanonlinearcontrol,whichbelongstothecategoryofintelligentcontrol.Amajorfeatureoffuzzycontrolisthatithasbothasystematictheoryandalargeamountofpracticalapplicationbackground.ThedevelopmentoffuzzycontrolinitiallyencounteredgreaterresistanceintheWest;however,ithasbeenquicklyandwidelyusedintheEast,especiallyinJapan.
Inthepast20years,fuzzycontrolhasmadegreatprogressbothintheoryandtechnology,andhasbecomeaveryactiveandfruitfulbranchinthefieldofautomaticcontrol.Itstypicalapplicationsinvolvemanyaspectsofproductionandlife,suchasfuzzywashingmachines,airconditioners,microwaveovens,vacuumcleaners,camerasandcamcordersinhouseholdappliances;inthefieldofindustrialcontrol,therearewaterpurificationtreatments,fermentationprocesses,andchemicalreactors.,Cementkilns,etc.;inspecialsystemsandotheraspects,therearesubwayparkingatstations,cardriving,elevators,escalators,steamengines,androbotfuzzycontrol.
Basicprinciples
Inordertoachievehigh-precisioncontroloflinearmotormotion,thesystemadoptsafullyclosed-loopcontrolstrategy.However,inthespeedloopcontrolofthesystem,becausetheloaddirectlyactsonthemotorHowever,ifonlyPIDcontrolisusedforthedisturbance,itisdifficulttomeettherapidresponserequirementsofthesystem.Becausethefuzzycontroltechnologyhasthecharacteristicsofwideapplicationrangeandcertainrobustnesstotime-varyingloads,thelinearmotorservocontrolsystemisasystemthatrequiresfastresponseandcanrealizedynamicadjustmentinaveryshorttime.Therefore,thispaperconsidersdesigningaPIDfuzzycontrollerinthespeedloop,usingthefuzzycontrollertocontrolthespeedofthemotor,andrealizestheprecisecontrolofthelinearmotortogetherwiththeclassiccontrolstrategyofthecurrentloopandthepositionloop.
Thefuzzycontrollerconsistsoffourparts:
(1)Fuzzy.Themainfunctionistoselecttheinputquantityofthefuzzycontrollerandconvertitintothefuzzyquantitythatcanberecognizedbythesystem,whichspecificallyincludesthefollowingthreesteps:
First,theinputquantityisprocessedtomeettherequirementsoffuzzycontrol;
Secondly,scaletheinputquantity;
Thirdly,determinethefuzzylanguagevalueofeachinputquantityandthecorrespondingmembershipfunction.
(2)Rulebase.Establishfuzzyrulebasebasedontheexperienceofhumanexperts.Fuzzyrulelibrarycontainsmanycontrolrules,whichisakeystepinthetransitionfromactualcontrolexperiencetofuzzycontroller.
(3)Fuzzyreasoning.Mainlyrealizeknowledge-basedreasoninganddecision-making.
(4)Deblurring.Themainfunctionistoconvertthecontrolquantityobtainedbyreasoningintocontroloutput.
3.2Speedloopfuzzycontrollerdesign
First,thespeederrorEandthedeviationchangerateΔEarebothfuzzyquantized,andthequantizeddataisusedasthetwofuzzycontrollers.Input;then,performfuzzyinferenceaccordingtothefuzzyrules,anddefuzzifytheinferencefuzzyvalueandthenmultiplyitbyascalefactortoconverttoΔKp,ΔKi,ΔKd;third,addthevalueobtainedinstep2totheoriginalvalueGetthelatestsetofPIDvalues;finally,obtainthecontroldegreeu(t)accordingtothenewPIDvaluestocompletethecontroltask.
Concept
Thegeneralcontrolsystemarchitectureconsistsoffivemainparts,namely:definitionofvariables,fuzzification,knowledgebase,logicaljudgmentandde-fuzzification.ThefollowingwilldiscusseachpartAbriefexplanation:
Definevariables
Thatistodeterminethestatusoftheprogrambeingobservedandconsidertheactionsofcontrol.Forexample,ingeneralcontrolproblems,inputvariableshaveoutputerrorsEandoutputErrorrateofchangeEC,andfuzzycontrolwillalsocontrolthevariableastheinputUofthenextstate.Amongthem,E,EC,andUarecollectivelycalledfuzzyvariables.
Fuzzification
Theinputvalueisconvertedintothenumericalvalueoftheuniverseinanappropriateproportion,andthespokenvariableisusedtodescribetheprocessofmeasuringthephysicalquantity,accordingtotheappropriatelinguisticvalue(linguisticvalue)Findtherelativemembershipdegreeofthisvalue.Thiscolloquialvariableiscalledfuzzysubsets.
KnowledgeBase
Includestwoparts:adatabase(database)andarulebase(rulebase).Thedatabaseprovidesdefinitionsfordealingwithfuzzydata;andtherulebaseusesagroupoflanguagesControlrulesdescribecontrolobjectivesandstrategies.
LogicJudgment
Imitatethefuzzyconceptofhumanjudgment,usefuzzylogicandfuzzyinferencemethodtomakeinferences,andgetthefuzzycontrolsignal.Thispartistheessenceofthefuzzycontroller.
Defuzzify
Defuzzify:Convertthefuzzyvalueobtainedbyinferenceintoaclearcontrolsignalastheinputvalueofthesystem.
Variableselection
Theselectedcontrolvariablemusthavesystemcharacteristics.Whetherthecontrolvariableisselectedcorrectlywillhaveagreatimpactontheperformanceofthesystem.Forexample,whendoingpositioncontrol,theerroramountbetweenthesystemoutputandthesetvaluecanbeusedastheinputvariableofthefuzzycontroller.Generallyspeaking,thesystemoutput,outputvariation,outputerror,outputerrorvariation,andtotaloutputerrorcanbeselectedasthelanguagevariablesofthefuzzycontroller.Thespecificchoicedependsontheengineer’sunderstandingofthesystemanditsprofessionalknowledge..Therefore,experienceandengineeringknowledgeplayaveryimportantroleintheselectionofcontrolvariables.
Domaindivision
Afterthecontrolvariablesaredetermined,thenextstepistowritethecontrolrulesbasedonexperience.Beforemakingthefuzzycontrolrules,theinputandoutputvariablespaceofthefuzzycontrollermustbedividedintofuzzycontrol.Forexample,whentheinputspacehasonlyasinglevariable,threeorfivefuzzysetscanbeusedtodividethespaceintothreeorfiveregions.Whentheinputspaceisabinaryvariable,usingfourfuzzycontrolrules,thespacecanbedividedintofourregions.
Thedegreeofoverlapbetweenvariousfieldsduringfuzzysegmentationaffectstheperformanceofcontrol;generallyspeaking,thereisnoclearmethodtodeterminethedegreeofoverlapofthemodelset,andmostofthemrelyontheadjustmentofsimulationandexperimenttodeterminethesegmentationmethod,butSomereportssuggestthatabout1/3~1/2isideal.Thesizeoftheoverlapmeansthedegreeofblurbetweenfuzzycontrolrules,sofuzzysegmentationisanimportantfeatureoffuzzycontrol.
Functiontype
ThefuzzyvariableusedbyProfessorMamdaniatthebeginningisdividedintotwotypes:continuoustypeanddiscretetype.Therefore,thetypeofmembershipfunctioncanalsobedividedintocontinuoustypeanddiscretetype.kind.Duetothedifferentchoiceoflanguagevariablesandcorrespondingmembershipfunctions,manydifferentfuzzycontrollerarchitectureswillbeformed;thefollowingwillintroducethetypesofmembershipfunctions:
1.ContinuoustypeMembershipfunction
Therearethreecommoncontinuousmembershipfunctionsinfuzzycontrollers:
(1)Bell-shaped(2)Triangle(3)Trapezoid
2.DiscretetypeMembershipfunction
ProfessorMamdaniusesacontinuoustotalsetInaddition,adiscretecombinationcomposedof13elementsisalsoused.Becauseitismoreconvenienttouseintegerswhencalculatingwithmicroprocessorsthandecimalsbetween[0,1],themembershipdegreesoffuzzysetsareallexpressedasintegers.
Atthebeginningofthedevelopmentoffuzzycontroltheory,mostlybell-shapedmembershipfunctionswereused.Inrecentyears,triangularmembershipfunctionshavealmostbeenused.Thisisbecausethecalculationoftriangularmembershipfunctionsisrelativelysimple.Theperformanceisalmostthesameasthebellshape.
Controlrules
Controlrulesarethecoreofthefuzzycontroller.Itscorrectnessdirectlyaffectstheperformanceofthecontroller.Thenumberofthemisalsoanimportantmeasureoftheperformanceofthecontroller.Factors,thecontrolruleswillbefurtherdiscussedbelow.
Rulesource
Howtoobtainfuzzycontrolrules:
(1)Expertexperienceandknowledge
FuzzycontrolisalsocalledIntheexpertsystemofthecontrolsystem,theexpert'sexperienceandknowledgehavecluestoitsdesign.Humanbeingsoftenuselanguagequalitativeanalysisratherthannumericalquantitativeanalysistojudgethingsindailylife;andfuzzycontrolrulesprovideanaturalframeworkfordescribinghumanbehavioranddecisionanalysis;expertknowledgecanusuallybeexpressedintheformofif...then.
Byaskingexperiencedexpertstoobtaintheknowledgeofthesystem,andchangetheknowledgetotheformofif...then,thefuzzycontrolrulescanbeformed.Inaddition,inordertoobtainthebestsystemperformance,itisoftennecessarytousethetrialanderrormethodmultipletimestomodifythefuzzycontrolrules.
(2)Operator'soperationmode
Thecurrentpopularexpertsystemonlyconsiderstheacquisitionofknowledge.Expertscanskillfullymanipulatecomplexcontrolobjects,butitisnoteasytologicalizeexpertknow-how,whichrequiresconsiderationoftheacquisitionofskillsincontrol.Manyindustrialsystemscannotbecontrolledcorrectlywithgeneralcontroltheory,butskilledoperatorscansuccessfullycontrolthesesystemswithoutmathematicalmode:Thisinspiredustorecordtheoperator'soperatingmodeandorganizeitintoif...Thetypeof.thencanconstituteasetofcontrolrules.
(3)Learning
Inordertoimprovetheperformanceofthefuzzycontroller,itmustbecapableofself-learningorself-organization,sothatthefuzzycontrollercanincreaseOrmodifythefuzzycontrolrules.
Ruletype
Therearetwomainformsoffuzzycontrolrules:
(1)Stateevaluationfuzzycontrolrules
Stateevaluation(stateevaluation)fuzzycontrolrulesaresimilartohumanintuitionthinking,itisusedbymostfuzzycontrollers,anditstypeisasfollows:Ri:ifx1isAi1andx2isAi2….andxnisAin
thenyisCi
wherex1,x2,…….,xnandyarelinguisticvariablesorcalledfuzzyvariables,representingthestatevariablesandcontrolvariablesofthesystem;Ai1,Ai2,...,AinandCiarelinguisticvalues,representingfuzzysetsintheuniverseofdiscourse.Thereisanotherrepresentationofthisform,whichistochangetherearparttothefunctionofthesystemstatevariable.Itsformisasfollows:
Ri:ifx1isAi1andx2isAi2….andxnisAin
theny=f1(x1,x2,…….,xn)
(2)Fuzzycontrolrulesfortargetevaluation
ObjectevaluationFuzzycontrolrulescanevaluatecontroltargetsandpredictfuturecontrolsignals.Itsformisasfollows:
Ri:if(UisCi→(xisA1andyisB1))thenUisCi
Features
Simplifiesthecomplexityofsystemdesign,especiallysuitableforthecontrolofnonlinear,time-varying,lagging,andincompletemodelsystems.
Doesnotdependontheprecisemathematicalmodelofthecontrolledobject.
Usingcontrollawstodescribetherelationshipbetweensystemvariables.
Thesystemisdescribedbyverbalfuzzyvariablesinsteadofnumericalvalues.Thefuzzycontrollerdoesnotneedtoestablishacompletemathematicalmodelforthecontrolledobject.
Thefuzzycontrollerisalanguagecontroller,whichisconvenientforoperatorstousenaturallanguageforman-machinedialogue.
Fuzzycontrollerisanidealnonlinearcontrollerthatiseasytocontrolandmaster.Ithasbetterrobustness,adaptabilityandbetterFaultTolerance.
Disadvantages
1.Thedesignoffuzzycontrolstilllackssystemicity,whichisdifficulttocontrolthecomplexsystem.Itisdifficulttoestablishasystematicfuzzycontroltheorytosolveaseriesofproblemsoffuzzycontrolmechanism,stabilityanalysis,systematicdesignmethod,etc.;
2.Howtoobtainfuzzyrulesandmembershipfunctions,thatis,thedesignofthesystemThemethodiscompletelybasedonexperience;
3.Simplefuzzyprocessingofinformationwillleadtoadecreaseinthecontrolaccuracyofthesystemandadeteriorationindynamicquality.Ifyouwanttoimprovetheaccuracy,youwillinevitablyincreasethenumberofquantizationlevels,whichwillleadtotheexpansionoftherulesearchrange,reducethespeedofdecision-making,andevenfailtoimplementreal-timecontrol;
4.HowtoensurethestabilityofthefuzzycontrolsystemishowtosolvethefuzzycontrolThestabilityandrobustnessissueshaveyettoberesolved.
System
Fuzzycontrolisbasedonmoderncontroltheory,combinedwithadaptivecontroltechnology,artificialintelligencetechnology,andneuralnetworktechnology,andhasbeenunprecedentedlyappliedinthefieldofcontrol.
Fuzzy-PIDcompoundcontrol
Fuzzy-PIDcompoundcontrolcombinesfuzzytechnologywithconventionalThePIDcontrolalgorithmiscombinedtoachievehighercontrolaccuracy.Whenthetemperaturedeviationislarge,Fuzzycontrolisused,whichhasfastresponsespeedandgooddynamicperformance;whenthetemperaturedeviationissmall,PIDcontrolisused,whichhasgoodstaticperformanceandmeetsthecontrolaccuracyofthesystem.Therefore,ithasbettercontrolperformancethanasinglefuzzycontrollerandasinglePIDregulator.
Adaptivefuzzycontrol
Thiscontrolmethodhastheabilityofadaptiveself-learning,Itcanautomaticallymodifyandimprovetheadaptivefuzzycontrolrules,whichimprovestheperformanceofthecontrolsystem.Ithasbettercontrolperformanceforthosecomplexsystemswithnonlinearity,largetimedelay,andhighorder.
Parameterself-tuningfuzzycontrol
Itisalsocalledproportionalfactorself-tuningfuzzycontrol.Thiscontrolmethodhasstrongadaptabilitytoenvironmentalchanges,andcanautomaticallycalibratethecontrollerinarandomenvironment,sothatthecontrolsystemcanmaintaingoodperformanceevenwhenthecharacteristicsofthecontrolledobjectchangeoraredisturbed.
ExpertFuzzyControlEFC(ExpertFuzzyController)
Thecombinationoffuzzycontrolandexpertsystemtechnologyfurtherimprovestheintelligencelevelofthefuzzycontroller.Thiscontrolmethodnotonlymaintainsthevalueoftherule-basedmethodandtheflexibilitybroughtaboutbythefuzzysetprocessing,butalsocombinestheexpressionofexpertsystemtechnologywiththeadvantagesofusingknowledgetodealwithawiderrangeofcontrolproblems.
Human-likeintelligentfuzzycontrol
ICalgorithmhastwokindsofproportionalmodeandholdmodeThecharacteristicsofthebasicmode.Thesetwocharacteristicsenablethesystemtobeintwostatesofclosed-loopoperationandopen-loopoperationwhentheabsolutevalueoftheerrorchanges.Thiscanproperlyresolvethecontradictionbetweenstability,accuracy,andrapidity,andisbetterappliedtopurelagobjects.
Neuro-FuzzyControl(Neuro-FuzzyControl)
Thiscontrolmethodisbasedonneuralnetworksandusesfuzzylogictohavestrongstructuralknowledgeexpressioncapabilities,thatis,theabilitytodescribethequalitativeknowledgeofthesystem,thepowerfullearningcapabilitiesofneuralnetworks,andthedirectprocessingcapabilitiesofquantitativedata.
Multivariablefuzzycontrol
Thiskindofcontrolissuitableformultivariablecontrolsystems.Amultivariablefuzzycontrollerhasmultipleinputvariablesandoutputvariables.
Fuzzyinference
Uptonow,thefuzzycontroltheorycanbedividedintothreemethods.Thefirstkindofinferenceisbasedonthesynthesisruleoffuzzyrelations,andthesecondkindofinference.Themethodissimplifiedbasedontheinferencemethodoffuzzylogic.Thethirdmethodofinferenceissimilartothefirstmethod,exceptthatthesubsequentpartischangedtoagenerallinearformula.Fuzzyinferencesmostlyadoptsyllogism,whichcanbeexpressedasfollows:
Conditionalproposition:IfxisAthenyisB
Fact:xisA
Conclusion:yisB
Theconditionalpropositioninthenotationisequivalenttothefuzzycontrolrulesinfuzzycontrol.Therelationshipbetweenthefrontpartandthebackpartcanbeexpressedbyafuzzyrelationship;asfortheinferencecalculation,itisThefuzzyrelationshipandfuzzysetAarecombinedandcalculatedtoobtainfuzzysetB.
Iftheantecedentpartcontainsmultiplepropositions,itcanbeexpressedasfollows:
Conditionalproposition:Ifx1isA1….andxnisAn
thenyisB
Fact:xisA1and….andxnisA'n
Conclusion:yisB
De-fuzzificationmethod
Intheimplementationoffuzzycontrol,manycontrolrulesaresubjectedtotheaboveinferencecalculations,andthenthecontroloutputisobtainedbycombiningtheinferenceresultsobtainedfromthecalculations;inordertoobtaintheoutputofthecontrolledsystem,thefuzzysetBmustbedefuzzified,Methodsofdefuzzificationinclude:
(1)Centerofgravitymethod
(2)Heightmethod
(3)Areamethod
Latest: Information resource sharing
Next: Tadao Umesao